經(jīng)過多年來的發(fā)展,增材制造技術(shù)正在對諸多行業(yè)產(chǎn)生深刻影響,并且有可能發(fā)展成為“第四次工業(yè)革命”。以熔融沉積(FDM)工藝為基礎(chǔ)使用高分子材料的3D打印技術(shù)已經(jīng)廣泛用于各個領(lǐng)域,展現(xiàn)出了巨大的潛力。不需要模具、可以成型復(fù)雜形狀、成型周期短等特點都是其他傳統(tǒng)工藝無法比擬的。
復(fù)合材料3D打印工藝的主要優(yōu)勢在于成本低,周期短,能實現(xiàn)復(fù)雜結(jié)構(gòu)復(fù)合材料構(gòu)建的快速制造。目前在航空航天、汽車和防衛(wèi)等部門都在實施這種技術(shù),以實現(xiàn)靈活開發(fā)、不同批量生產(chǎn)和按需交付。
例如,一家希臘的機(jī)械加工商為汽車制造了一批3D打印的碳纖維復(fù)合材料連接桿。
在基礎(chǔ)3D打印熱塑性材料加入纖維,以碳纖維為例,目前有兩種碳纖維打印方法:短切碳纖維填充熱塑性塑料和連續(xù)碳纖維增強(qiáng)材料。其中,切碎的碳纖維填充熱塑性塑料是通過標(biāo)準(zhǔn)熔融沉積(FDM)或SLS打印機(jī)進(jìn)行打印的,其主要組成材料是熱塑性塑料(PLA,ABS或尼龍)與細(xì)小的短切碳纖維。
對于短碳纖維增強(qiáng)高分子,理論上纖維長度為0.2至0.4mm,目前FDM和SLS打印的纖維長度在5至10μm。短碳纖維的加入,可以明顯提高部件的力學(xué)強(qiáng)度,尤其是拉伸和彎曲強(qiáng)度及模量;同時也提高了部件的尺寸穩(wěn)定性、以及表面光潔度和精度。但是,一些短纖維增強(qiáng)纖維通過使材料過度飽和來提高強(qiáng)度。這不僅損害了零件的整體質(zhì)量,而且還降低了表面質(zhì)量和零件精度。
連續(xù)碳纖維制造是一種獨特的打印工藝,其將連續(xù)的碳纖維束鋪設(shè)到標(biāo)準(zhǔn)FDM熱塑性基材中。連續(xù)碳纖維才是真正的增強(qiáng)復(fù)合材料強(qiáng)度的關(guān)鍵。利用3D打印復(fù)合材料部件替代傳統(tǒng)的金屬部件,其優(yōu)勢在于可以在重量的一小部分上實現(xiàn)類似的強(qiáng)度,所以從效益上來講,這是一種經(jīng)濟(jì)有效的解決方案。
高性能連續(xù)纖維增強(qiáng)熱塑性復(fù)合材料3D打印技術(shù)是以連續(xù)纖維增強(qiáng)熱塑性高分子材料,實現(xiàn)高性能復(fù)合材料零件直接3D打印,采用連續(xù)纖維與熱塑性高分子材料為原材料,利用同步復(fù)合浸漬-熔融沉積的3D打印工藝實現(xiàn)復(fù)合材料制備與成形的一體化制造。使用這種方法的打印機(jī)在打印時,通過FFF擠出的熱塑性塑料內(nèi)的第二個打印噴嘴鋪設(shè)連續(xù)的高強(qiáng)度纖維(例如碳纖維,玻璃纖維或凱夫拉)。從而使得增強(qiáng)纖維形成印刷零件的“主干”,產(chǎn)生堅硬、堅固和耐用的效果。
目前市場上已開發(fā)出多款連續(xù)纖維增強(qiáng)復(fù)合材料3D打印機(jī),并建立了3D打印復(fù)合材料體系(碳纖維、芳綸纖維增強(qiáng)聚乳酸、尼龍、聚酰亞胺等)。所制備的碳纖維增強(qiáng)PA復(fù)合材料纖維體積含量達(dá)到42%時,抗彎強(qiáng)度達(dá)到560MPa,抗彎模量達(dá)到62GPa,是傳統(tǒng)PLA零件的9倍左右。
目前3D打印機(jī)的類型和打印技術(shù)也開發(fā)出很多種,除了熔融沉積(FDM)工藝,也稱為FFF(熔融線材制造)之外,還有其他類型。其中包括:CFF(連續(xù)線材制造);ADAM(原子擴(kuò)散增材制造);SLS/SLM(選擇性激光燒結(jié)/選擇性激光熔化);DLP(直接光處理);SLA(光固化立體造型)和粘結(jié)劑噴射等。
當(dāng)今,增材制造領(lǐng)域已經(jīng)呈爆發(fā)式發(fā)展,傳統(tǒng)的制造技術(shù)如注塑法可以以較低的成本大量制造聚合物產(chǎn)品,而增材制造技術(shù)則可以以更快、更靈活以及更低成本的辦法進(jìn)行生產(chǎn)。而且,隨著技術(shù)的發(fā)展,3D打印正逐漸走向量產(chǎn)化。